ANALISIS POLA SPASIAL SUHU PERMUKAAN DI KOTA MATARAM TERKAIT FENOMENA URBAN HEAT ISLAND (UHI) BERDASARKAN FAKTOR EMISIVITAS LAHAN, KERAPATAN VEGETASI DAN JUMLAH KENDARAAN
Main Article Content
Abstract
The difference in air temperature between the city center and the suburbs is known as the effect of the UHI (Urban Heat Island) phenomenon. In Indonesia, this phenomenon of uneven excess heat is better known as the hot pole of the city. UHI is analogized as an island, which has a surface temperature of hot air that is centered in the area (Urban) and will decrease in temperature in the area (Sub Urban) or the area (Rural) around it. The effect of UHI has become the world's spotlight that must be addressed immediately, because more and more cities are experiencing the effects of this phenomenon, if it continues, it will lead to a higher rate of increase in global warming. Indirectly, Mataram City has experienced the UHI phenomenon which is marked by an increase in air temperature along with an increase in the number of vehicles, a lack of green open space and an increasing number of land conversions into built-up land as housing/settlement areas and city service activities. The purpose of this article is to find out the spatial pattern of surface temperature in Mataram City from 2000 to 2020. The method used is a remote sensing system, by utilizing Landsat 8 Satellite Imagery data. In addition, a simple linear regression analysis method is used to knowing how much influence the independent variable (X) has on the dependent variable (Y). The variables used are the value of vegetation density, number of vehicles and land emissivity as a variable (X) and the value of the spatial pattern of surface temperature as a variable (Y). These three independent variables are what distinguishes this article from previous articles. Therefore, the author tries to redevelop and analyze the UHI phenomenon that is currently happening in the city of Mataram. From the results of the analysis, it was found that the surface temperature value in Mataram City from 2000 to 2020 had a varying temperature trend value, where in 2000 the maximum temperature value reached 28.3oC and in 2020 the trend of the maximum temperature value increased to 35.1oC. Meanwhile, if we look at the distribution of the spatial pattern of surface temperatures in the city of Mataram, it also continues to experience formation and increase, which begins to be concentrated in the middle of the city's activities and begins to spread to the periphery of the city's activity center. The value of the greatest influence resulting from statistical tests shows that the value of vegetation density gives an effect of 56% and is followed by the number of vehicles by 53%, while the smallest influence value is found in the emissivity factor of land with an influence value of 49%.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Amliana, D., Prasetyo, Y., & Sukmono, A. (2016). Analisis Perbandingan Nilai Ndvi Landsat 7 Dan Landsat 8 Pada Kelas Tutupan Lahan (Studi Kasus : Kota Semarang, Jawa Tengah). Jurnal Geodesi Undip, 5(1), 264–274.
Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2005.11.016
Darlina, S. P., Sasmito, B., & Yuwono, B. D. (2018). Analisis Fenomena Urban Heat Island Serta Mitigasinya (Studi Kasus : Kota Semarang). Jurnal Geodesi Undip, 7(3), 77–87.
EUMETSAT. (2015). Normalised Difference Vegetation Index: Product Guide. http://www.eumetsat.int
Fadlillah, M. F., Hadiani, R., & Solichin, S. (2018). Analisis Kekeringan Hidrologi Berdasarkan Metode Normalized Difference Vegetation Index (NDVI) Di Daerah Aliran Sungai Alang Kabupaten Wonogiri. Jurnal Riset Rekayasa Sipil. https://doi.org/10.20961/jrrs.v2i1.24324
Fawzi, N. I. (2014). Pemetaan Emisivitas Menggunakan Indeks Vegetasi (Surface Emissivity Mapping Using Vegetation Indices). Majalah Ilmiah Globë, 16(2), 133–140. https://doi.org/10.13140/RG.2.2.35486.13123
Hardyanti, L., Sobirin, S., & Wibowo, A. (2017). Variasi Spasial Temporal Suhu Permukaan Daratan di Kota Jakarta tahun 2015 dan 2016. Prosiding Industrial Research Workshop and National Seminar, 8(3), 704–713.
Noviyanti, E. (2014). Konsep Mitigasi Urban Heat Island di CBD Kota Surabaya ( UP . Tunjungan ). 3214205001, 1–11.
Nugroho, J. T., Haryani, N. S., Zubaidah, A., Hidayat, Vetrita, Y., Sulma, S., Febrianti, N., Maulana, T., & Fitriana, H. L. (2015). Pemanfaatan Penginderaan Jauh Untuk Pemantauan Lingkungan.
Nurul Fatimah, R. (2012). Pola Spasial Suhu Permukaan Daratan Kota Surabaya tahun 1994, 2000 dan 2011. Skripsi Universitas Indonesia.
Rosenzweig, C., Solecki, W., Parshall, L., Gaffin, S., Lynn, B., Goldberg, R., Cox, J., & Hodges, S. (2006). Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. 86th AMS Annual Meeting, August 2015.
Rushayati, S. B., & Hermawan, R. (2013). Characteristics of Urban Heat Island Condition in DKI Jakarta. Forum Geografi, 27(2), 111. https://doi.org/10.23917/forgeo.v27i2.2370
Sobirin, & Fatimah, R. N. (2015). Urban Heat Island Kota Surabaya. Geoedukasi, IV(2), 46–69. http://jurnalnasional.ump.ac.id/index.php/GeoEdukasi/article/view/529
Suspidayanti, L., Sunaryo, D. ., & Sai. S.S. (2014). Perbandingan Metode Estimasi Suhu Permukaan Daratan Menggunakan Emisivitas Berdasarkan Klasifikasi Dan NDVI (Studi Kasus : Kota Malang). Teknik Geodesi ,Fakultas Teknik Sipil Dan Perencanaan Institut Teknologi Nasional Malang, 1–9.
U.S. Geological Survey. (2016). Landsat 8 Data Users Handbook. In Nasa (Vol. 8, Issue June). https://landsat.usgs.gov/documents/Landsat8DataUsersHandbook.pdf
USGS. (2019). Landsat 7 (L7) Data Users Handbook. In Department of the Interior, U.S. Geological Survey (Vol. 7, Issue November). https://landsat.usgs.gov/sites/default/files/documents/LSDS1927_L7_Data_Users_Handbook.pdf
Verhulst, N., & Govaerts, B. (2010). The normalized difference vegetation index (NDVI) GreenSeeker TM handheld sensor: Toward the integrated evaluation of crop management Part A: Concepts and case studies. https://repository.cimmyt.org/bitstream/handle/10883/550/94192.pdf?sequence=1&isAllowed=y
Hendra, F. H. (2016). Pembangunan Perumahan Rendah Emisi Karbon Di Surabaya Timur. Seminar Nasional Sains Dan Teknologi Terapan IV, 15–24.
Adiansyah, J. S., Ningrum, N. P., Pratiwi, D., & Hadiyanto, H. (2019). Kajian Daur Hidup (Life Cycle Assessment) dalam Produksi Pupuk Urea: Studi Kasus PT Pupuk Kujang. Jurnal Ilmu Lingkungan, 17(3), 522. https://doi.org/10.14710/jil.17.3.522-527
Adiansyah, Joni Safaat. (2011). Pipeline Program Cdm Di Indonesia: Sebuah Peluang Dan Tantangan Untuk Industri Pertambangan. Jurnal Teknosains. https://doi.org/10.22146/teknosains.3986
Xiaodong, L., Fan, Y., Yuanxue, G., & McCarthy, J. (2014). Case study of carbon footprint of residential building construction. Materials Research Innovations. https://doi.org/10.1179/1432891714Z.000000000647
Adiansyah, J. S. (2019). Improving the environmental performance of a copper mine site in Indonesia by implementing potential greenhouse gas emissions reduction activities. Chemical Engineering Transactions. https://doi.org/10.3303/CET1972010
BPS. (2019). Kota Mataram Dalam Angka 2019. BPS Kota Mataram. https://mataramkota.bps.go.id
DISHUB. (2018). Dinas Perhubungan Dalam Angka 2018 (Vol. 148). Dinas Perhubungan Kota Mataram. dishub.mataramkota.go.id